Palo Azul vs. Atherosclerosis


Flavonoids in tea may “lower blood cholesterol concentrations and blood pressure”

What can’t this magic tea do?

In case you’ve never heard of flavonoids before, they’re natural products commonly found in vegetables, fruits, plants, bark, flowers, wine and tea such as Palo Azul.

There’s a ton of studies that have found numerous health benefits in flavonoids and these are are attributed to their anti-oxidative, anti-inflammatory, anti-diabetic, anti-aging, anti-hypertensive, anti-bacterial, anti-mutagenic, anti-viral and anti-carcinogenic properties.

Learn all about Flavonoids here

palo azul and fruits with flavonoids

We’ve studied two medical reviews composed of findings from 327 different studies conducted specifically on flavonoids, and their findings revealed that "dietary flavonoids are associated with a lower risk of hypertension and CVD (cardiovascular disease).”

The scientists who published these reviews also observed that “the blood pressure level was reduced in patients with hypertension” after greater consumption of flavonoids.

palo azul vs cardiovascular disease

Another finding suggests that flavonoids in tea maylower blood cholesterol concentrations and blood pressure, thereby providing some protection against cardiovascular disease.”

These are the MOST flavonoid-rich foods: apples, pears, onions, strawberries, blueberries, celery, peppers, and teas such as palo azul

applepearsonionsstrawberries and blueberriescelerypalo azul tea

This is due to their ability to “inhibit LDL oxidation via a mechanism involving scavenging of free radicals.” A study established the importance of the oxidation of LDL cholesterol by writing that the “oxidative modification of LDL cholesterol is thought to play a key role during atherosclerosis.“

oxidative stress

Free radicals are atoms with a single valence electron that cause damage to the body associated with diabetes, cancer, aging, atherosclerosis, Parkinson's, Alzheimer's and many other diseases.

free radicals and oxidative stress formation

Learn all about Palo Azul's antioxidant property here

This happens because electrons like to be in pairs... and for this reason, free radicals look for "free" electrons in the body. This causes damage to cells, proteins, DNA and these damaged molecules can mutate, grow tumors, and damage the DNA code. Eventually, this cellular damage causes new cells to grow with defects and it will lead to aging and degenerative diseases.

*Here comes an extremely important finding!

Scientists in one study observed the “consumption of them (flavonoids) is associated with improvement in endothelial function (blockage of arteries) via vascular endothelial nitric oxide synthase and protein kinase B (Akt) activation.”

What is endothelial function?

The endothelium is a thin membrane that lines the inside of the heart and blood vessels. Endothelial cells release substances that control vascular relaxation and contraction, as well as enzymes that control blood clotting, immune function, and platelet adhesion.

palo azul vs endothelial dysfunction or clogged arteries

Endothelial dysfunction has been shown to be important in predicting stroke and heart attacks due to the inability of the arteries to dilate completely. Dysfunction can result from high blood pressure, diabetes, high cholesterol, and smoking.

Studies have shown that endothelial dysfunction precedes the development of atherosclerosis, a chronic disease characterized by abnormal thickening and hardening of the artery walls. This can cause a stroke or a heart attack.

In other words...

Endothelial dysfunction causes a blockage in the arteries that can lead to hypertension, stroke, or heart attack.

palo azul and fruits with flavonoids

Finally, one study concluded the following:

“Flavonoids can prevent injury caused by free radicals in various ways and one way is the direct scavenging of free radicals. This action protects the LDL particles and, theoretically, flavonoids may have preventive action against atherosclerosis.”

So there's no reason why we shouldn't eat vegetables, fruit and drink Palo Azul tea every day!

Below, we share with you the key results we found in over 300 studies conducted on the effects of flavonoids in atherosclerosis.

book with palo azul benefits and studies

Key findings from medical studies

They (flavonoids) have miscellaneous favourable biochemical and antioxidant effects associated with various diseases such as cancer, Alzheimer's disease (AD), atherosclerosis, etc.

• “Flavonoids have been reported to beneficially impact parameters associated with atherosclerosis, including lipoprotein oxidation, blood platelet aggregation, and vascular reactivity.”
Flavonoids inhibit LDL oxidation via a mechanism involving scavenging of free radicals.

• “EP (Palo Azul) reduced the blood glucose, increased serum insulin, body weight, marker enzymes of hepatic function, glycogen, HDL, GK and HK while there was reduction in the levels of triglyceride, cholesterol.”

• “Studies have indicated the protective effects of flavonoids in cardiovascular diseases and these chemicals possess the bioactivity to positively affect against cardiovascular risk factors such as lipoprotein oxidation, dyslipidemia and endothelial dysfunction.”

• “Antioxidant, antithrombotic, anti-inflammatory, and hypolipidemic properties are illustrated to play a significant role in the lower cardiovascular mortality observed with higher flavonoid intake.”

• “Continued studies of the mechanisms underlying the biological effects of plant flavonoids may provide new strategies for the prevention and treatment of cardiovascular disease.”

Do you want to reduce your cholesterol and blood pressure?
Try palo azul and experience the miraculous and incredible benefits of flavonoids!
buy palo azul button

Medical Studies

* Palo Azul is commonly referred to by its scientific name: Eysenhardtia polystachya / E. polystachya / E.P - Cyclolepis genistoides / C. genistoides - kidney wood - palo dulce

(2016, Dec 29) (Medical Review: 161 studies) Flavonoids: an overview

Flavonoids, a group of natural substances with variable phenolic structures, are found in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine. These natural products are well known for their beneficial effects on health and efforts are being made to isolate the ingredients so called flavonoids. Flavonoids are now considered as an indispensable component in a variety of nutraceutical, pharmaceutical, medicinal and cosmetic applications. This is attributed to their anti-oxidative, anti-inflammatory, anti-mutagenic and anti-carcinogenic properties coupled with their capacity to modulate key cellular enzyme function. Research on flavonoids received an added impulse with the discovery of the low cardiovascular mortality rate and also prevention of CHD.

The recent studies on different plant metabolites have shown that flavonoids may perform a key role in enzyme and receptor systems of the brain, exerting significant effects on the central nervous system, like prevention of the neurodegeneration associated with AD and Parkinson's disease(,15,119).

They have miscellaneous favourable biochemical and antioxidant effects associated with various diseases such as cancer, Alzheimer's disease (AD), atherosclerosis, etc. Flavonoids have several subgroups, which include chalcones, flavones, flavonols and isoflavones. These subgroups have unique major sources. For example, onions and tea are major dietary sources of flavonols and flavones. A number of flavonoids were studied to lower Alzheimer's Aβ production using molecular docking studies.

Lee et al.(,81), while working on the known flavonoid inhibitors of β-KAS III against the methicillin-resistant bacteria Staphylococcus aureus, found that flavonoids such as naringenin (5,7,4′-trihydroxyflavanone) and eriodictyol (5,7,3′,4′-tetrahydroxyflavanone) are potent antimicrobial inhibitors of Staphylococcus aureus KAS III. Ganugapati et al.(,82) worked on in silico modelling and docking studies of a superbug enzyme, namely New Delhi metallo-β-lactamase-1 (NDM-1), which is an enzyme found in Escherichia coli.

Lu & Chong(,85) carried out the computational work to predict the binding modes of flavonoid derivatives with the neuraminidase of the 2009 haemagglutinin 1 neuraminidase (H1N1) influenza virus. They employed molecular dynamics simulation techniques to optimise the 2009 H1N1 influenza neuraminidase X-ray crystal structure. All the twenty flavonoid derivatives were found to be satisfactory in binding and inhibiting the activity of the virus. These findings may help to develop a potential drug form of the flavonoid derivatives for the treatment of H1N1 influenza disease.

Kim et al.(,87) reported that a flavonoid-rich diet is associated with a reduced risk of CVD (cardiovascular disease). The study focused on individual as well as total flavonoid diet effects. Higher flavonoid intake was found to be associated with the improved CVD risk factors.

The observational studies done by Hügel et al.(,89) indicated that dietary flavonoids are associated with a decreased risk of hypertension and CVD. A diet rich in all flavonoid classes through herbs and beverages improves vascular health leading to a reduced risk of diseases. It has been observed that the consumption of them is associated with improvement in endothelial function via vascular endothelial nitric oxide synthase and protein kinase B (Akt) activation. The effect of regular quercitin intake on blood pressure in overweight and obese patients with pre-hypertension and stage I hypertension was studied in seventy patients. Ambulatory blood pressure and office blood pressure were measured. It was observed that the blood pressure level was reduced in patients with hypertension(,90).

Paris et al.(,97) worked on flavonoids which lower Alzheimer's amyloid protein (Aβ) production via a nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-dependent mechanism. It is well known that AD is due to the accumulation of Aβ peptides and the presence of neurofibrillary tangles in the brain(,98,99). Aβ is believed to play an important role in AD and it has been shown that certain flavonoids such as genistein, quercetin, taxifolin, kaemferol, luteolin, apigenin, daidzein, aminogeneistein, and α- and β-napthofalvone can affect Aβ production. Recently, it was suggested that the Aβ-lowering properties of flavonoids are mediated by a direct inhibition of β active site cleavage enzyme-1 (BACE-1) activity, the rate-limiting enzyme responsible for the production of Aβ peptides(,97). It has been reported that a strong correlation exists between the inhibition of NF-κB activation by flavonoids and their Aβ-lowering properties, suggesting that flavonoids inhibit Aβ production in whole cells via NF-κB-related mechanisms.

Flavonoids can prevent injury caused by free radicals in various ways and one way is the direct scavenging of free radicals. Flavonoids are oxidised by radicals, resulting in a more stable, less-reactive radical. In other words, flavonoids stabilise the reactive oxygen species by reacting with the reactive compound of the radical. Because of the high reactivity of the hydroxyl group of the flavonoids, radicals are made inactive, as explained in the following equation as given by Korkina & Afanasev(,108): They further mentioned that this action protects the LDL particles and, theoretically, flavonoids may have preventive action against atherosclerosis.

Antioxidants are compounds that protect the cells against the oxidative effect of reactive oxygen species, and the impaired balance between these reactive oxygen species and antioxidants results in oxidative stress. The oxidative stress may lead to cellular damage which is related to various health ailments such as diabetes, cancer, CVD, neurodegenerative disorders and ageing. Oxidative stress can also damage many biological molecules and proteins and DNA molecules are significant targets of cellular injury. Antioxidants interfere with radical-producing systems and increase the function of endogenous antioxidants, protecting the cells from damage by these free radicals

Anticancer effects of flavonoids such as tangeritin, 3-hydroxyflavone, 3′,4′-dihydroxyflavone, 2′,3′-dihydroxyflavone, fisetin, apigenin, luteolin daidzein and genistein have been carried out by a number of researchers(,151154). Ren et al.(,130) and Huang et al.(,155), while working on natural phenolic compounds and their potential use for cancer prevention, reported that various flavonoids such as tannins, stilbenes, curcuminoids, coumarins, lignans, quinones and other flavonoids have chemopreventive properties and also contribute to induce apoptosis by arresting the cell cycle, regulating carcinogen metabolism and ontogenesis expression. While explaining the possible mechanism of flavonoids in cancer prevention they further mentioned that the flavonoids have complementary and overlapping mechanisms of action including antioxidant activity and scavenging free radicals, modulation of carcinogen metabolism, regulation of gene expression on oncogenes and tumour-suppressor genes in cell proliferation and differentiation, induction of cell cycle arrest and apoptosis, modulation of enzyme activities in detoxification, oxidation and reduction, anti-inflammatory properties and action on other possible targets.

Flavonoids have also been recognised for their antimicrobial activity and many researchers have isolated and identified the structures of flavonoids having properties of antifungal, antiviral and antibacterial activity. Because of this property, many flavonoids are now being used extensively in the fields of nutrition, food safety and health. The antiviral effect of flavonoids has been shown by Wang et al.(,142), particularly in therapy for viral infection.

Flavonoids, like flavonols, are associated with lower population rates of dementia(,156). Similarly, Hwang & Yen(,157) and Jager & Saaby(,119) suggested that citrus flavanones such as hesperidin, hesperetin and naringenin could traverse the blood–brain barrier and may play an effective role in the intervention for neurodegenerative diseases. The role of flavonoids in antidiabetic activity and anti-ageing has also been reported(,158161).

(Apr-Jun, 2014) Evaluation of antidiabetic, antioxidant and antiglycating activities of the Eysenhardtia polystachya

The aim of the present study was to evaluate the antidiabetic, antioxidant and antiglycation properties of Eysenhardtia polystachya (EP) bark methanol-water extract. EP showed Hdonor activity, free radical scavenging activity, metal chelating ability and lipid peroxidation. Antioxidant activity may be attributed to the presence of phenolic and flavonoid compounds. EP is an inhibitor of fluorescent AGE, methylglyoxal and the glycation of haemoglobin. In STZ-induced diabetic mice, EP reduced the blood glucose, increased serum insulin, body weight, marker enzymes of hepatic function, glycogen, HDL, GK and HK while there was reduction in the levels of triglyceride, cholesterol, TBARS, LDL and G6Pase.

Conclusion: Eysenhardtia polystachya possesses considerable antioxidant activity with reactive oxygen species (ROS) scavenging activity and demonstrated an anti-AGEs and hepatoprotective role, inhibits hyperglycemic, hyperlipidemic and oxidative stress indicating that these effects may be mediated by interacting with multiple targets operating in diabetes mellitus.

Our results in this experiment showed that E. polystachya has an antidiabetic, antihyperlipidemic, a significant ability to reduce the formation of AGEs and antioxidant activities, which are considered to play important roles in the development of diabetes complications. Therefore, this plant may have relevance in the prevention and treatment of diseases in which oxidants or free radicals or AGEs are implicated. As a result, chemical studies are now being undertaken to characterise these bioactivities.

magicktea palo azul logo

Do you know someone that’s trying to reduce their cholesterol or blood pressure?
Help them with MagickTea Palo Azul!
buy palo azul button