hombre con alzheimer, parkinson, o demencia

Palo Azul vs. Alzheimer's, Parkinson's and Dementia

man with alzheimer's parkinson's or dementia

Flavonoids in Palo Azul reduce risk of Alzheimer’s, Parkinson’s and Dementia

What can’t this magic tea do!?

If you’ve never heard of flavonoids before, they’re natural products commonly found in vegetables, fruits, plants, bark, flowers, wine and tea such as Palo Azul.

There’s a ton of studies that have found numerous health benefits in flavonoids and these are are attributed to their anti-oxidative, anti-inflammatory, anti-diabetic, anti-aging, anti-hypertensive, anti-bacterial, anti-mutagenic, anti-viral and anti-carcinogenic properties.

Learn all about Flavonoids here

palo azul and fruits with antioxidant flavonoids

Alzheimer’s & parkinsons

A very interesting study analyzed a group of 49,281 men and 80,336 women in the Health Professionals Follow-up Study and found that “the participants in the highest quintile of total flavonoids had a 40% lower PD (Parkinson’s Disease) risk than those in the lowest quintile.” The researchers from this study concluded the following:

“Our findings suggest that intake of some flavonoids may reduce PD (Parkinson's Disease) risk.”

This finding is corroborated by a medical review that found that “flavonoids may perform a key role in enzyme and receptor systems of the brain, exerting significant effects on the central nervous system, like prevention of the neurodegeneration associated with AD (Alzheimer’s Disease) and Parkinson's disease” This is due to mainly to their potent antioxidant effects which have been associated with these diseases and many others.

Another study found similarly that flavonoids have “favourable biochemical and antioxidant effects associated with various diseases such as cancer, Alzheimer's disease (AD), atherosclerosis, etc.”

Antioxidant foods: Vegetables, fruits, nuts, seeds, fatty fish, olive oil, turmuric, cocoa and teas such as palo azul

palo azul and antiinflammatory foods

Oxidative foods: foods that are heavily processed and have high fructose content, trans fats and refined carbs

hamburger and fries lead to oxidative stress

Dementia

One study found that “Flavonoids contained in berries may have a positive effect against Parkinson's disease and may help to improve memory in elderly people.”

These are the MOST flavonoid-rich foods: apples, pears, onions, strawberries, blueberries, celery, peppers, and teas such as palo azul

applepearsonionsstrawberries and blueberriescelerypalo azul tea

Lastly, the researchers from this study also found that “Intake of antioxidant flavonoids has been inversely related to the risk of incidence of dementia.”

In other words... There's no reason why we shouldn't all eat vegetables, fruit and drink Palo Azul tea every day!

Here we have summarized the key points of the studies we reviewed and also cited them.

Enjoy! :)

...And don't forget to help your friends and family by sharing MagickTea Palo Azul with them!

book with palo azul benefits and studies

Key findings from medical studies

• This finding is corroborated by a medical review that found that “flavonoids may perform a key role in enzyme and receptor systems of the brain, exerting significant effects on the central nervous system, like prevention of the neurodegeneration associated with AD (Alzheimer’s Disease) and Parkinson's disease(,15,119).”

• “A number of flavonoids were studied to lower Alzheimer's Aβ production using molecular docking studies.”

• “Paris et al.(,97) worked on flavonoids which lower Alzheimer's amyloid protein (Aβ) production via a nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-dependent mechanism. It is well known that AD (Alzheimer’s Disease) is due to the accumulation of Aβ peptides and the presence of neurofibrillary tangles in the brain(,98,99).”

• “Aβ is believed to play an important role in AD (Alzheimer’s Disease) and it has been shown that certain flavonoids such as genistein, quercetin, taxifolin, kaemferol, luteolin, apigenin, daidzein, aminogeneistein, and α- and β-napthofalvone can affect Aβ production.”

• “Flavonoids contained in berries may have a positive effect against Parkinson's disease and may help to improve memory in elderly people.”

    Do you know someone who could benefit from these miraculous benefits?

    Help them out with MagickTea Palo Azul!

    buy palo azul button

    Medical Studies

    * Palo Azul is commonly referred to by its scientific name: Eysenhardtia polystachya / E. polystachya / E.P - Cyclolepis genistoides / C. genistoides - kidney wood - palo dulce

    (2016, Dec 29) (Medical Review: 161 studies) Flavonoids: an overview

    Flavonoids, a group of natural substances with variable phenolic structures, are found in fruits, vegetables, grains, bark, roots, stems, flowers, tea and wine. These natural products are well known for their beneficial effects on health and efforts are being made to isolate the ingredients so called flavonoids. Flavonoids are now considered as an indispensable component in a variety of nutraceutical, pharmaceutical, medicinal and cosmetic applications. This is attributed to their anti-oxidative, anti-inflammatory, anti-mutagenic and anti-carcinogenic properties coupled with their capacity to modulate key cellular enzyme function. Research on flavonoids received an added impulse with the discovery of the low cardiovascular mortality rate and also prevention of CHD.

    The recent studies on different plant metabolites have shown that flavonoids may perform a key role in enzyme and receptor systems of the brain, exerting significant effects on the central nervous system, like prevention of the neurodegeneration associated with AD and Parkinson's disease(,15,119).

    They have miscellaneous favourable biochemical and antioxidant effects associated with various diseases such as cancer, Alzheimer's disease (AD), atherosclerosis, etc. Flavonoids have several subgroups, which include chalcones, flavones, flavonols and isoflavones. These subgroups have unique major sources. For example, onions and tea are major dietary sources of flavonols and flavones. A number of flavonoids were studied to lower Alzheimer's Aβ production using molecular docking studies.

    Lee et al.(,81), while working on the known flavonoid inhibitors of β-KAS III against the methicillin-resistant bacteria Staphylococcus aureus, found that flavonoids such as naringenin (5,7,4′-trihydroxyflavanone) and eriodictyol (5,7,3′,4′-tetrahydroxyflavanone) are potent antimicrobial inhibitors of Staphylococcus aureus KAS III. Ganugapati et al.(,82) worked on in silico modelling and docking studies of a superbug enzyme, namely New Delhi metallo-β-lactamase-1 (NDM-1), which is an enzyme found in Escherichia coli.

    Lu & Chong(,85) carried out the computational work to predict the binding modes of flavonoid derivatives with the neuraminidase of the 2009 haemagglutinin 1 neuraminidase (H1N1) influenza virus. They employed molecular dynamics simulation techniques to optimise the 2009 H1N1 influenza neuraminidase X-ray crystal structure. All the twenty flavonoid derivatives were found to be satisfactory in binding and inhibiting the activity of the virus. These findings may help to develop a potential drug form of the flavonoid derivatives for the treatment of H1N1 influenza disease.

    Kim et al.(,87) reported that a flavonoid-rich diet is associated with a reduced risk of CVD (cardiovascular disease). The study focused on individual as well as total flavonoid diet effects. Higher flavonoid intake was found to be associated with the improved CVD risk factors.

    The observational studies done by Hügel et al.(,89) indicated that dietary flavonoids are associated with a decreased risk of hypertension and CVD. A diet rich in all flavonoid classes through herbs and beverages improves vascular health leading to a reduced risk of diseases. It has been observed that the consumption of them is associated with improvement in endothelial function via vascular endothelial nitric oxide synthase and protein kinase B (Akt) activation. The effect of regular quercitin intake on blood pressure in overweight and obese patients with pre-hypertension and stage I hypertension was studied in seventy patients. Ambulatory blood pressure and office blood pressure were measured. It was observed that the blood pressure level was reduced in patients with hypertension(,90).

    Paris et al.(,97) worked on flavonoids which lower Alzheimer's amyloid protein (Aβ) production via a nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-dependent mechanism. It is well known that AD is due to the accumulation of Aβ peptides and the presence of neurofibrillary tangles in the brain(,98,99). Aβ is believed to play an important role in AD and it has been shown that certain flavonoids such as genistein, quercetin, taxifolin, kaemferol, luteolin, apigenin, daidzein, aminogeneistein, and α- and β-napthofalvone can affect Aβ production. Recently, it was suggested that the Aβ-lowering properties of flavonoids are mediated by a direct inhibition of β active site cleavage enzyme-1 (BACE-1) activity, the rate-limiting enzyme responsible for the production of Aβ peptides(,97). It has been reported that a strong correlation exists between the inhibition of NF-κB activation by flavonoids and their Aβ-lowering properties, suggesting that flavonoids inhibit Aβ production in whole cells via NF-κB-related mechanisms.

    Flavonoids can prevent injury caused by free radicals in various ways and one way is the direct scavenging of free radicals. Flavonoids are oxidised by radicals, resulting in a more stable, less-reactive radical. In other words, flavonoids stabilise the reactive oxygen species by reacting with the reactive compound of the radical. Because of the high reactivity of the hydroxyl group of the flavonoids, radicals are made inactive, as explained in the following equation as given by Korkina & Afanasev(,108): They further mentioned that this action protects the LDL particles and, theoretically, flavonoids may have preventive action against atherosclerosis.

    Antioxidants are compounds that protect the cells against the oxidative effect of reactive oxygen species, and the impaired balance between these reactive oxygen species and antioxidants results in oxidative stress. The oxidative stress may lead to cellular damage which is related to various health ailments such as diabetes, cancer, CVD, neurodegenerative disorders and ageing. Oxidative stress can also damage many biological molecules and proteins and DNA molecules are significant targets of cellular injury. Antioxidants interfere with radical-producing systems and increase the function of endogenous antioxidants, protecting the cells from damage by these free radicals

    Anticancer effects of flavonoids such as tangeritin, 3-hydroxyflavone, 3′,4′-dihydroxyflavone, 2′,3′-dihydroxyflavone, fisetin, apigenin, luteolin daidzein and genistein have been carried out by a number of researchers(,151154). Ren et al.(,130) and Huang et al.(,155), while working on natural phenolic compounds and their potential use for cancer prevention, reported that various flavonoids such as tannins, stilbenes, curcuminoids, coumarins, lignans, quinones and other flavonoids have chemopreventive properties and also contribute to induce apoptosis by arresting the cell cycle, regulating carcinogen metabolism and ontogenesis expression. While explaining the possible mechanism of flavonoids in cancer prevention they further mentioned that the flavonoids have complementary and overlapping mechanisms of action including antioxidant activity and scavenging free radicals, modulation of carcinogen metabolism, regulation of gene expression on oncogenes and tumour-suppressor genes in cell proliferation and differentiation, induction of cell cycle arrest and apoptosis, modulation of enzyme activities in detoxification, oxidation and reduction, anti-inflammatory properties and action on other possible targets.

    Flavonoids have also been recognised for their antimicrobial activity and many researchers have isolated and identified the structures of flavonoids having properties of antifungal, antiviral and antibacterial activity. Because of this property, many flavonoids are now being used extensively in the fields of nutrition, food safety and health. The antiviral effect of flavonoids has been shown by Wang et al.(,142), particularly in therapy for viral infection.

    Flavonoids, like flavonols, are associated with lower population rates of dementia(,156). Similarly, Hwang & Yen(,157) and Jager & Saaby(,119) suggested that citrus flavanones such as hesperidin, hesperetin and naringenin could traverse the blood–brain barrier and may play an effective role in the intervention for neurodegenerative diseases. The role of flavonoids in antidiabetic activity and anti-ageing has also been reported(,158161).



    (2013, Dec 29) (Medical review: 166 studies) Chemistry and Biological Activities of Flavonoids: An Overview

    Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine.

    Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators.

    The number of studies has suggested protective effects of flavonoids against many infectious (bacterial and viral diseases) and degenerative diseases such as cardiovascular diseases, cancers, and other age-related diseases. Flavonoids also act as a secondary antioxidant defense system in plant tissues exposed to different abiotic and biotic stresses.

    Flavonoids found in the highest amounts in the human diet include the soy isoflavones, flavonols, and the flavones.

    Oxidative modification of LDL cholesterol is thought to play a key role during atherosclerosis. The isoflavan glabridin, a major polyphenolic compound found in Glycyrrhiza glabra (Fabaceae), inhibits LDL oxidation via a mechanism involving scavenging of free radicals [52]. Several epidemiological studies have suggested that drinking either green or black tea may lower blood cholesterol concentrations and blood pressure, thereby providing some protection against cardiovascular disease. Flavonoids contained in berries may have a positive effect against Parkinson's disease and may help to improve memory in elderly people. Antihypertensive effect has been observed in total flavonoid fraction of Astragalus complanatus in hypertensive rats [55]. Intake of antioxidant flavonoids has been inversely related to the risk of incidence of dementia.

    Flavonoids possess many biochemical properties, but the best described property of almost every group of flavonoids is their capacity to act as antioxidants. The antioxidant activity of flavonoids depends upon the arrangement of functional groups about the nuclear structure. The configuration, substitution, and total number of hydroxyl groups substantially influence several mechanisms of antioxidant activity such as radical scavenging and metal ion chelation ability

    Hepatoprotective activities were observed in flavonoids isolated from Laggera alata against carbon-tetrachloride (CCl4-) induced injury in primary cultured neonatal rat hepatocytes and in rats with hepatic damage. Several clinical investigations have shown the efficacy and safety of flavonoids in the treatment of hepatobiliary dysfunction and digestive complaints, such as sensation of fullness, loss of appetite, nausea, and abdominal pain.

    Flavonoids are known to be synthesized by plants in response to microbial infection; thus it should not be surprising that they have been found in vitro to be effective antimicrobial substances against a wide array of microorganisms. Flavonoid rich plant extracts from different species have been reported to possess antibacterial activity [70, 72, 89, 90]. Several flavonoids including apigenin, galangin, flavone and flavonol glycosides, isoflavones, flavanones, and chalcones have been shown to possess potent antibacterial activity [91]. These compounds are reported for their in vitro antibacterial activity against Vibrio cholerae, Streptococcus mutans, Shigella, and other bacteria [94, 95]. Another study demonstrated inhibitory activity of quercetin, apigenin, and 3,6,7,3′,4′-pentahydroxyflavone against Escherichia coli DNA gyrase [98].

    Inflammation is a normal biological process in response to tissue injury, microbial pathogen infection, and chemical irritation. Inflammation is initiated by migration of immune cells from blood vessels and release of mediators at the site of damage. This process is followed by recruitment of inflammatory cells, release of ROS, RNS, and proinflammatory cytokines to eliminate foreign pathogens, and repairing injured tissues. In general, normal inflammation is rapid and self-limiting, but aberrant resolution and prolonged inflammation cause various chronic disorders [106]. A number of flavonoids such as hesperidin, apigenin, luteolin, and quercetin are reported to possess anti-inflammatory and analgesic effects. It has been reported that flavonoids are able to inhibit expression of isoforms of inducible nitric oxide synthase, cyclooxygenase, and lipooxygenase, which are responsible for the production of a great amount of nitric oxide, prostanoids, leukotrienes, and other mediators of the inflammatory process such as cytokines, chemokines, or adhesion molecules [110]. Much of the anti-inflammatory effect of flavonoid is on the biosynthesis of protein cytokines that mediate adhesion of circulating leukocytes to sites of injury. Certain flavonoids are potent inhibitors of the production of prostaglandins, a group of powerful proinflammatory signaling molecules [111].’

    Dietary factors play an important role in the prevention of cancers. Fruits and vegetables having flavonoids have been reported as cancer chemopreventive agents [72, 115]. Consumption of onions and/or apples, two major sources of the flavonol quercetin, is inversely associated with the incidence of cancer of the prostate, lung, stomach, and breast. In addition, moderate wine drinkers also seem to have a lower risk to develop cancer of the lung, endometrium, esophagus, stomach, and colon [116]. The critical relationship of fruit and vegetable intake and cancer prevention has been thoroughly documented. It has been suggested that major public health benefits could be achieved by substantially increasing consumption of these foods [117]. Flavonoids are known to inhibit production of heat shock proteins in several malignant cell lines, including breast cancer, leukemia, and colon cancer [119].

    Higher consumption of phytoestrogens, including isoflavones and other flavonoids, has been shown to provide protection against prostate cancer risk [132]. It is well known that due to oxidative stress cancer initiation may take place and thus potent antioxidants show potential to combat progression of carcinogenesis. Potential of antioxidant as an anticancer agent depends on its competence as an oxygen radical inactivator and inhibitor [70, 72, 133]. Therefore diets rich in radical scavengers would diminish the cancer-promoting action of some radicals [134].

    Natural compounds are an important source for the discovery and the development of novel antiviral drugs because of their availability and expected low side effects. Naturally occurring flavonoids with antiviral activity have been recognized since the 1940s and many reports on the antiviral activity of various flavonoids are available. Many flavonoids, namely, dihydroquercetin, dihydrofisetin, leucocyanidin, pelargonidin chloride, and catechin, show activity against several types of virus including HSV, respiratory syncytial virus, polio virus and Sindbis virus [135]. Inhibition of viral polymerase and binding of viral nucleic acid or viral capsid proteins have been proposed as antiviral mechanisms of action [139].

    Flavonoids have long been reported as serving multiple functions in plants [140]. Various abiotic and biotic factors helps in the generation of ROS in plants leading to oxidative stress. Flavonoids have been suggested as representing a secondary antioxidant defense system in plant tissues exposed to different stresses [141].

    Prevention and cure of diseases using phytochemicals especially flavonoids are well known. Fruits and vegetables are natural sources of flavonoids. Variety of flavonoids found in the nature possesses their own physical, chemical, and physiological properties. Structure function relationship of flavonoids is epitome of major biological activities. Medicinal efficacy of many flavonoids as antibacterial, hepatoprotective, anti-inflammatory, anticancer, and antiviral agents is well established. Further achievements will provide newer insights and will certainly lead to a new era of flavonoid based pharmaceutical agents for the treatment of many infectious and degenerative diseases.




    (2012) Habitual intake of dietary flavonoids and risk of Parkinson disease

    In the current analysis, we included 49,281 men in the Health Professional Follow-up Study and 80,336 women from the Nurses' Health Study.

    We identified 805 participants (438 men and 367 women) who developed PD during 20-22 years of follow-up. In men, after adjusting for multiple confounders, participants in the highest quintile of total flavonoids had a 40% lower PD risk than those in the lowest quintile

    In the pooled analyses for the subclasses, intakes of anthocyanins and a rich dietary source, berries, were significantly associated with a lower PD risk. Our findings suggest that intake of some flavonoids may reduce PD risk, particularly in men, but a protective effect of other constituents of plant foods cannot be excluded.

    Now you see why we called it MagickTea?

    Try Palo Azul and experience the increidble health benefits of this magic tea and its flavonoids!

    buy palo azul button

    Back to blog